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Abstract. The projection of the eigenfunctions obtained in standard plane-wave first-principles
calculations is used for analysing atomic orbital basis sets. The ‘spillage’ defining the error
in such a projection allows the evaluation of the quality of an atomic orbital basis set for a
given system and its systematic variational optimization. The spillage is shown to correlate
with the mean square error in the energy bands obtained from the projected Hamiltonian
matrix. The method is applied to the characterization of finite-range pseudo-atomic orbitals
(Sankey O F and Niklewski D J 1989Phys. Rev.B 40 3979) in comparison to infinite-range
pseudo-atomic and Slater-type orbitals. The bases are evaluated and optimized for several zinc-
blende semiconductors and for aluminium; the finite-range orbitals display high quality in spite
of the limited range. A simple scheme is proposed to systematically enlarge the basis without
increasing its range.

1. Introduction

One of the several approximations needed for electronic structure calculations of solids is
the truncation of the one-particle Hilbert space. Choosing an appropriate basis is critical for
obtaining high-quality results. There are schemes based on localized, extended, or mixed
bases. Most of the methods of the first group use atomic-like bases, the eigenfunctions
being obtained as linear combinations of atomic orbitals (LCAO methods) [1]. The most
widely used among the extended bases is the plane-wave basis [2].

Plane waves (PW) together with pseudopotentials have been shown to offer a very
successful calculation scheme for a very large number of applications. Particularly since
the development ofab initio pseudopotentials [3], PW have provided a tool for very accurate
calculation of different properties of solids [2]. PW methods are quite simple to implement
and the convergence of the calculations can be controlled with a single parameter, the
plane-wave cut-off. The PW basis is also independent of atomic positions, which is very
convenient for the coding. However, notwithstanding these advantages, plane waves have
important drawbacks, namely (i) the imposed translational invariance (supercells for non-
periodic systems), and (ii) their inefficiency as regards basis size.

LCAO methods are much more efficient as regards the size of the required basis. This
is a very important advantage for calculations for large systems. Moreover, they have been
shown to be very suitable for order-N methods [4] in which the computational effort scales
linearly with the size of the system. However, this large reduction in the size of the basis is
obviously accompanied by a potential loss of completeness which can affect the results. It
is then necessary to choose an appropriate basis to obtain accurate results. Nevertheless, it
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is important to stress that, once a high-quality atomic basis set has been chosen, calculations
can be performed with an accuracy perfectly comparable to that for plane waves, and with
a large reduction of CPU time and memory.

Several methods have been developed to optimize LCAO basis sets. Most of them are
based on two procedures: (i) minimization of total energies of atoms, molecules, or solids
[5]; and (ii) minimization of differences in the energy bands compared with the experiment
or with PW calculations [1, 6]. We present here a projection method that links PW and
LCAO schemes and provides: (i) a systematic way to characterize the quality of an atomic
basis and therefore a way to optimize it; (ii) LCAO energy bands, Hamiltonian and overlap
matrix elements; and (iii) chemical information through population analysis. The key of
the optimization method is to measure the ability of a set of atomic orbitals to represent
the actual eigenstates of the PW calculation of a system. By minimizing the error in the
projection of the eigenstates the atomic basis can be optimized for that particular system.
This scheme is related to methods of quantum chemistry where a relatively small LCAO
basis set is optimized by minimizing the distance (maximizing the overlap) of its subspace
to the one spanned by another, larger LCAO basis [7, 8]. The scheme used in this paper
was already outlined in [9], the projection technique for bands being already sketched by
Chadi in [6].

Besides the projection optimization, the possibility of calculating LCAO band structures
and matrix elements allows the characterization of (i) the energies, and (ii) the range of
interactions of the basis. Particularly for this purpose, non-orthogonalized atomic basis
sets are more adequate, since the interaction parameters have proved to be much more
transferable and to have shorter range than for orthogonal bases [10, 11]. The direct use
of atomic orbitals in condensed systems gives non-orthogonal basis sets naturally. These
non-orthogonal atomic basis sets will be used throughout this paper [12].

In the present paper, this method of analysis and optimization is applied to the
characterization of basis sets made up of the finite-range pseudo-atomic orbitals introduced
by Sankey and Niklewski [13]. They are compared with the infinite-range pseudo-atomic
orbitals [14] and Slater-type orbitals. Both minimal and expanded bases are explored as
applied to several zinc-blende semiconductors, as well as to aluminium.

The optimized basis can be used for the calculation of larger systems, where plane-wave
calculations are impractical. Besides that possible use, they can also be used directly for the
analysis of the PW results themselves [9]. The chemical language of population analysis
is not accessible to the PW scheme. The projection into the optimum LCAO basis allows
its application, to compute atomic charges, bond charges, and charge transfers. In a similar
way to in the decomposition of the total charge into orbital populations, the density of states
can also be projected into atomic orbitals to give local densities of states. It is shown here
how the optimization of the basis is important for obtaining sensible values of the charges,
and also how the projection can be used to partially control the intrinsic arbitrariness of any
population analysis.

The structure of this paper is as follows. A brief description of the method for
characterizing and optimizing the atomic basis is given in section 2, as well as a description
of the way of performing the population analysis and the band-structure calculations.
Section 3 describes the main characteristics of theab initio PW calculations used here.
A description of the different types of atomic orbital analysed in this paper can be found
in section 4. Section 5 proposes the spillage as a parameter to characterize basis sets and
their correlations with other quantities. Section 6 contains the results of the analysis and
optimization of the different sets of atomic orbitals. Population analysis is discussed in
section 7. We end with the conclusions in section 8.
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2. Description of the method

The method presented in this paper is based on projection techniques [6, 9]. Given the
results of a PW calculation, the projection of the calculated eigenstates onto an atomic basis
can provide information about this basis set and about the PW results. A good basis must
be able to represent the essential features of the PW eigenstates. Once the PW calculation
has been performed for the system of interest, the projection process is much less costly
than the self-consistent calculation itself, and many different basis sets can be analysed
and optimized for one single PW calculation, a much more economical procedure than
performing a full self-consistent calculation for each trial basis set.

On the basis of our method we have the definition of thespillage [9]. Given a PW
calculation we define the spillageS� for a given local basis set as

S� = 1

Nk

1

Nα

Nk∑
k

Nα∑
α=1

〈ψα(k)|(1 − P(k))|ψα(k)〉 (1)

where |ψα(k)〉 are the PW calculated eigenstates, andNk and Nα are the numbers of
calculatedk-points in the Brillouin zone and the number of bands considered, respectively,
and S� is the specific subspace spanned by the eigenstates included in the sum (defined
by Nk andNα). P(k) is the projector operator for projection into the subspace of Bloch
functions of wave vectork, generated by the atomic basis, and defined as usual for a
non-orthogonal basis [12]:

P(k) =
∑
µ

|φµ(k)〉〈φµ(k)| =
∑
µν

|φµ(k)〉S−1
µν (k)〈φν(k)| (2)

where

〈r|φµ(k)〉 =
∑
R

φµ(r − rµ − R)eik·(rµ+R) (3)

where theφµ(r) are the atomic orbitals,rµ the atomic coordinates in the unit cell, andR
the lattice vectors.

Sµν(k) = 〈φµ(k)|φν(k)〉 (4)

is the overlap matrix of the atomic basis. The vectors|φµ(k)〉 constitute the dual of the
atomic basis, and satisfy

〈φµ(k)|φν(k)〉 = 〈φµ(k)|φν(k)〉 = δµν. (5)

S� is a parameter that varies between 0 and 1 and measures the ability of a basis to
represent PW eigenstates, by measuring how much of the subspace of the Hamiltonian
eigenstates falls outside the subspace spanned by the atomic basis. If we consider the PW
eigenfunctions|ψα(k)〉 and their projection onto the atomic basisP(k)|ψα(k)〉, then S�
gives the average of||(1 − P)|ψα(k)〉||2 over the eigenstates considered for the projection.
It must be also pointed out that the projected eigenstates|χα(k)〉 = P(k)|ψα(k)〉 are not
necessarily orthonormal, the overlap matrixRαβ(k) = 〈χα(k)|χβ(k)〉 being different from
the identity matrix. In particularRαα(k) 6 1, and

S� = 1

Nk

1

Nα

Nk∑
k

Nα∑
α=1

(1 − Rαα(k)) (6)

is the averaged norm which has been lost (spilled) in the projection process. If we restrict
our analysis to theoccupiedeigenstates, thenS� is the fraction of total electronic charge
spilled when projecting, and will be referred to ascharge spillageSQ.
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A local spillage can also be defined as a function of real-space coordinates:

S�(r) = 1

Nk

1

Nα

Nk∑
k

Nα∑
α=1

(|ψα(k, r)|2 − |χα(k, r)|2). (7)

We consider it a useful and direct way for visually characterizing the quality of the
representation of the PW eigenstates. The total spillage defined above is recovered by
integrating the local spillage over the three-dimensional space.

Important for the characterization of the quality of a basis for a given system is the energy
band structure. To calculate the LCAO energy bands of a system we project the Hamiltonian
associated with the self-consistent PW charge density of our reference calculation onto the
basis subspace:

HLCAO
µν (k) = 〈φµ(k)|HPW |φν(k)〉. (8)

To obtain the LCAO Hamiltonian matrix elements we expand the Bloch basis functions into
plane waves [6]. We calculate the kinetic energy and the effect of the non-local part of
the pseudopotential directly in Fourier space. The effect of the local part of the potential
and self-consistent Hartree and LDA interactions is calculated using fast Fourier transform
algorithms:

HLCAO
µν (k) =

∑
|k+G|2<Emax

〈φµ(k)|k + G〉〈k + G|HPW |φν(k)〉 (9)

SLCAOµν (k) =
∑

|k+G|2<Emax
〈φµ(k)|k + G〉〈k + G|φν(k)〉 (10)

where theG are reciprocal-lattice vectors andEmax is an energy cut-off independent of
the one used in the PW calculation, which must be large enough to guarantee a reliable
representation of the atomic basis. With this method we obtain a LCAO Hamiltonian from
a first-principles PW calculation, no free parameters being fitted.

The LCAO Hamiltonian is obtained in Bloch space and, as a consequence, it includes
interactions up to infinite neighbours. The deviations in the band structure with respect to
the PW only reflect the incompleteness and inadequacy of the basis, clearly separated from
the possible additional approximation of neglecting matrix elements beyond some range of
interactions. We can study the two approximations separately. In most studies of LCAO
band structures these two effects are mixed together. As an exception we must mention
the work of Chadi [6] and of Jansen and Sankey [14], where LCAO Hamiltonians with
interactions up to an infinite range of neighbours are also obtained.

The Hamiltonian matrix in real space is calculated from the Hamiltonian matrix in Bloch
space by performing a Bloch-type transformation:

HLCAO
µν (Rµν) =

∑
k

HLCAO
µν (k)eik·(Rµ−Rν ) (11)

SLCAOµν (Rµν) =
∑

k

SLCAOµν (k)eik·(Rµ−Rν ) (12)

where normalization factors which depend on the overlaps are omitted for clarity. The sum
has to be extended to a sufficient number ofk-points, taking into account that the number
of points depends on the real-space range of the interactions [15, 16].

The projection technique can also be used for obtaining chemical information from the
PW calculations by means of an LCAO population analysis. We use the one proposed by
Mulliken [17]. The PW occupied eigenstates are projected onto the subspace spanned by
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the atomic basis. Due to the non-orthogonality of the projected eigenstates, the density
operator has to be properly defined to ensure charge conservation:

ρ̂ =
∑

k

occ∑
α

|χα(k)〉〈χα(k)| (13)

where

|χα(k)〉 =
∑
β

R−1
βα (k)|χβ(k)〉

represent the vectors of the dual set of the projected eigenstates, andRβα(k) =
〈χβ(k)|χα(k)〉. The LCAO density matrix is then written in terms of the dual LCAO
basis:

Pµν = 〈φµ|ρ̂|φν〉 (14)

where the charge associated with an orbitalµ is

Qµ =
∑
ν

PµνSνµ. (15)

3. Reference calculations

The analyses of the bases presented in this paper are based on reference PW calculations
which have been performed usingab initio pseudopotentials generated by the improved
Troullier–Martins method [18] and within the local density approximation (LDA) for
electron exchange and correlation [19]. Of course, other schemes could have equally been
used, the only requirement for applying the method being the plane-wave expansion of the
one-electron wave-functions. The energy cut-off for the plane-wave expansion has been
taken large enough to allow us to consider that all of the calculations are well converged.
High-energy cut-offs are not necessary for the application of the method but are important
to ensure accurate results for the optimization of the orbitals as well as for the population
analysis. The cut-offs used are: 10 Ryd for Al; 20 Ryd for Si, BP, and AlP; 30 Ryd
for GaAs; 40 Ryd for graphite; 50 Ryd for BN; and 70 Ryd for C and SiC. For the self-
consistent zinc-blende semiconductor calculations, we used two irreducible-Brillouin-zone
points (IBZP), equivalent to 32 whole-Brillouin-zone points (BZP), giving ak-meshlength
cut-off [16] lc = a, wherea is the lattice constant. For aluminium and graphite we used,
respectively, 10 IBZP, 125 BZP,lc = 13.435 au, and 8 IBZP, 16 BZP,lc = 4.648 au.
The length cut-offlc is simply related to the maximum range of the real-space matrix
elements obtainable from the PW calculation (equations (11) and (12)) by|Rµν | < lc. For
the pseudopotentials, in all of the calculations we have used the separable, fully non-local
formulation following Kleinman and Bylander [20].

4. Atomic basis sets

A brief description follows of the sets of atomic orbitals which are used throughout this
work. The basis sets studied can be classified into two groups: (i) those which are provided
by the numerical solution of the atomic problem (with the same atomic pseudopotential as
used in the PW calculation), hereafter called PAO (for pseudo-atomic orbitals) [13, 14]; and
(ii) Slater-type orbitals (STO) [5].

Within the first group, PAO∞ are the atomic solutions under real atomic boundary
conditions (atr = ∞). This family of bases allows for a scaling factor for the radial



3864 D Sánchez-Portal et al

part acting as a variational parameter to optimize the atomic orbitals via the spillage
minimization:

φ
opt

l (r) = λ
3/2
l φatml (λlr). (16)

PAO∞ represents quite a natural choice, since access to PW calculations is usually
accompanied by access to atomic calculations under the same approximations. They provide
a good description of the charge density and have already been used inab initio calculations
[14] giving accurate results. For covalent materials, with small charge transfers, they provide
a very good description of the pseudo-core region. This is worth considering since the PW
eigenstates are expanded in the atomic basis maximizing the projection without making
any distinction between the pseudo-core region (the zone near the atomic nucleus) and the
valence region (the interatomic zone).

The main disadvantage of the PAO∞ is the very long range of the interactions and
overlaps that they originate. Getting a shorter and perfectly defined range of interactions is
the reason to work with PAOrc . They are the solutions of the atomic pseudopotential when
forced to vanish outside a cut-off radiusrc, keeping the continuity, as introduced by Sankey
and Niklewski [13] (they will be denoted by specifying the value ofrc in atomic units).
The cut-off radius represents a variational parameter for this type of basis. These orbitals
seem promising candidates in calculation techniques for very large systems [4].

Within the Slater orbitals, we use the name STO1 for the conventional orbitals
rn−1 exp(−βr), wheren is the principal quantum number and the scale factorβ is taken
to be the same for all of the atomic orbitals within the same shell; STO2 will be the same,
but allowing for a differentβ for each orbital,βs 6= βp 6= βd ; and STO3 are the orbitals
rα exp(−βr), whereα becomes another variational parameter, no longer restricted to being
an integer, and allowing bothα andβ to be different for each orbital.

STO have been extensively used in LCAO calculations in quantum chemistry and have
proven to provide accurate results [5]. They present the additional advantage of their very
simple mathematical properties. To simplify the computational task, it is a common practice
to expand the STO orbitals as linear combinations of gaussian functions. These are the so-
called STO-NG [5] orbitals whereN stands for the number of gaussian orbitals used per
STO. We have made some tests to compare the results obtained using STO and STO-4G
orbitals. No appreciable differences have been found in the results. Spillage values and
optimum exponents are essentially the same in the two cases, and no further investigation
has been pursued concerning STO-NG orbitals.

STO orbitals do not seema priori to be very well suited for the description of the
pseudo-core region for the projection, possibly leading to a worsening of the spillage in
the valence region while trying to adapt the pseudo-core. To explore that possibility we
consider a last kind of orbital function, the pseudo-STO, which represent a link between
the STO and the PAO families. A pseudo-STO is a Slater-type orbital outside a certain
radius, and the numerical solution of the pseudopotential inside that radius—continuity of
the function and its derivative being imposed.

5. Spillage analysis

This section is devoted to showing the adequacy of an analysis based on the projection and
the spillage for the evaluation of a basis set. The total spillage provides a natural parameter
that can be used straightforwardly to measure systematically the quality of a basis. The
optimization in terms of spillage provides a variational scheme, since the minimum attainable
is zero, which means a perfect basis.
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Figure 1. The electron charge density for SiC:
(a) the self-consistent density contour map in the
(110) plane calculated using PW; (b) the same
after projecting the eigenstates onto a PAO∞ sp
basis; and (c) these two densities (PW shown
with solid lines and the projected density with
dotted lines) andSQ(r) along the bond axis. The
units are electrons per unit cell.

Both the projected charge density and the local spillage offer useful tools for visually
characterizing the quality of a basis. This is illustrated in figure 1, where a charge-density
contour map for SiC is shown comparing the PW results with the results of the projection
on the PAO∞, showing in addition the local spillage along the bond axis. We see that
some of the bond structure is lost, the charge density being much more spherical around the
atoms, when projecting on this basis. This can be also seen in the fact that the two maxima
in the density near the carbon nucleus are of approximately the same height, while in the
PW calculation there is more density on the bond side. All of these features can be seen
in the local spillage, which is negative in the regions with an excess of projected charge
and positive in the zones with a deficit of projected charge. The local charge spillage is
negative in the proximity of both core regions and positive in the bond region. Some of
the bond charge goes to an anti-bonding region. This feature also tends to make the charge
transfer lower for this PAO∞ basis (see below).

For the spillage analysis to be useful, the spillage has to be correlated with the quality
in the energetics of the system. This is tested in figure 2, where the mean square error of
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Figure 2. The mean square deviation in valence bands of the projected Hamiltonian from the
PW bands versus the charge spillage of different bases in silicon. Each symbol stands for a
different family of bases:� for PAOrc , × for PAO∞, + for STO, and♦ for different double-z
bases. Bases withσv lower than 0.2 eV include d orbitals.

Figure 3. Charge spillage versus the exponent for a STO1 basis set: (a) silicon with an spd
basis; and (b) diamond with an sp basis. Also shown are the optimum exponents for a STO2
basis set for the same systems.

the projected valence bands of crystalline silicon, as compared to the PW ones, is plotted
versus the charge spillageSQ, for different families of bases. It is calculated without shifting
the bands, the absolute zero being unambiguously defined (the Hamiltonian operator is not
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changed). This quantity can also be taken as an indicator of the error in the total energy
due to the approximation of the basis.

The clear correlation between the spillage and the error in the energy bands displayed in
figure 2 indicates that a basis optimization based on a minimization of the spillage is parallel
(at least approximately) to an energy minimization. This parallelism is even clearer within
a basis family, where the correlation is much more pronounced (different points within the
same family are obtained by varying the characteristic parameters presented above).

To finish this section, we introduce a lower bound for the spillage. The dependence of
S� on the atomic basis enters through the Fourier coefficients of the radial wave-functions.
Therefore,S� can be regarded as a function of these Fourier coefficientsφi,µ(|k + G|),
which are different for each atomi, orbital µ and each modulus|k + G|. Considering all
of these Fourier coefficients as free variables, the minimization ofS� gives a lower bound
for S�. Values of this lower bound will be shown as MinS in the tables.

6. Analysis and optimization of atomic basis sets

The quality of the LCAO bases presented above is measured and optimized for different
solids in this section using the spillage analysis, and, simultaneously, the LCAO band
structure is contrasted with the results for plane waves. The results are displayed in tables 1
to 4. The resulting numbers are abundant since the number of possibilities is large. For
the different kinds of basis introduced in section 4 there are different possible basis sizes,
of single-z or double-z type, meaning one or two orbitals per atomic symmetry. There is
the additional possibility of polarizing the basis, i.e., introducing atomic orbitals of a higher
angular momentum than needed, which, in the cases of this paper, represents the addition
of the d orbitals to the minimal sp basis.

The optimization of the different bases introduces new degrees of freedom since their
optimization is done with respect to different variational parameters (see section 4), and
also the spillage can be defined for different numbers of bands, depending on the particular
application for which the basis is optimized.

6.1. Minimal basis sets

Table 1 shows the spillages of the projections onto different minimal bases for silicon,
diamond, and aluminium, together with the mean square error in the LCAO bands as
compared with the PW ones. Only sp bases are considered, except for for Al, for which
also spd-basis data are shown due to the poorness of minimal sp bases for this solid. The
numbers displayed for STO bases have been obtained after minimization of the charge
spillage (the spillage of the valence eigenvectors) for the corresponding parameters. This
procedure is illustrated in figure 3 for the specific cases for silicon and carbon, where the
charge spillage is shown as a function of the STO exponents. PAOopt

∞ stands in table 1
for the PAO∞ optimized via a scale factor. The PAOrc are optimized with respect to the
radii of the basis functions,rc, as illustrated in figures 4, 5, and 6 for silicon, diamond, and
aluminium, respectively. In table 1, specific values ofrc are chosen.

All of the bases displayed in table 1 perform comparably well as regards the charge
spillage. sp is clearly better for C than for Si and Al, as expected, since d orbitals play
a lesser role for C than for Si and Al. The spillage for eigenstates including conduction
bands is larger than for valence bands only. For sp bases there is a factor of 10 to 20. The
two main reasons for that are: (i) the bases have been optimized by minimizing the charge
spillage; and (ii) higher-energy bands require higher-energy atomic orbitals.
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Table 1. Bases for silicon (sp), diamond (sp), and aluminium (sp and spd).SQ stands
for the charge spillage, andS4 and S8 for the spillage considering the first 4 and 8 bands,
respectively. PAO∞ and PAOrc are fixed bases, whereas STO1, STO2, STO3, and PAOopt

∞
have been optimized according to their respective variational parameters, to minimizeSQ. Qs ,
Qp , andQd are the total charges assigned to s, p, and d orbitals. The mean square error of
the LCAO bands with respect to the PW reference bands (in eV) is displayed for the valence
bands (σv) and the first two conduction bands (σc) for silicon and diamond, and for the first
and second bands (σ1+2) and third and fourth (σ3+4) for aluminium. MinS corresponds to the
spillage lower bound (see the text).

Basis SQ S8 Qs Qp σv σc

Si PAO∞ sp 0.0080 0.1596 1.32 2.68 0.30 2.15
PAOopt∞ sp 0.0078 0.1621 1.35 2.65 0.29 1.97
PAO5.0 sp 0.0139 0.1591 1.40 2.60 0.36 2.09

STO1 sp 0.0109 0.1764 1.48 2.52 0.38 2.43
STO2 sp 0.0076 0.1562 1.36 2.64 0.34 2.34
STO3 sp 0.0074 0.1548 1.34 2.66 0.29 1.95

Min S sp 0.0044 0.0689
Min S spd 0.0001 0.0014

Basis SQ S8 Qs Qp σv σc

C PAO∞ sp 0.0035 0.0719 1.05 2.95 0.32 2.19
PAOopt∞ sp 0.0027 0.0780 1.07 2.93 0.25 2.61
PAO4.0 sp 0.0041 0.0672 1.10 2.90 0.23 2.22

STO1 sp 0.0039 0.0771 1.11 2.89 0.26 3.07
STO2 sp 0.0039 0.0775 1.12 2.88 0.24 3.05
STO3 sp 0.0024 0.0790 1.09 2.98 0.17 3.36

Min S sp 0.0008 0.0226

Basis SQ S4 Qs Qp Qd σ1+2 σ3+4

Al PAO∞ sp 0.0165 0.1141 1.13 2.87 2.03 3.45
PAO∞ spd 0.0022 0.0053 0.77 1.39 0.84 0.61 0.24
PAOopt∞ spd 0.0011 0.0079 0.98 1.41 0.61 0.35 0.84

PAO6.0 sp 0.0157 0.1012 1.30 1.70 1.54 2.97
PAO6.0 spd 0.0014 0.0042 1.02 1.39 0.59 0.20 0.45
PAO5.3 sp 0.0158 0.0930 1.34 1.66 1.34 2.63
PAO5.3 spd 0.0007 0.0020 1.15 1.45 0.40 0.97 2.15

Min S sp 0.0009 0.0025
Min S spd 2.9 × 10−5 0.0007

Table 1 also shows the populations of s, p, and d orbitals (if present). It can be seen
that the sp3 hybridization is better accomplished in C than in Si (a perfect hybridization
would showQs = 1 andQp = 3). Qd for Al is quite appreciable.

The mean square error in the energy bands is displayed asσv for the valence bands and
σc for the first two conduction bands (σ1+2 for first two bands, andσ3+4 for third and fourth,
in the case of aluminium). The valence bands are quite well described with sp bases for
Si and C, but not for Al. The metallicity in Al demands a larger contribution of d orbitals,
which makes them necessary for any quantitative LCAO description of Al. The conduction
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Table 2. Basis optimizations for different number of bands, for Si, C (diamond), BN, and Al.
The superscripts indicate the number of bands used for theS-minimization (v means valence
bands). The basis is minimal, except for for Al, for which it is spd.SQ is the charge spillage,
and S4 and S8 are the spillages considering the first 4 and 8 bands, respectively. The mean
square error of the LCAO bands with respect to the PW reference bands (in eV) is displayed for
the valence bands (σv) and the first two conduction bands (σc) for Si, C, and BN, and for the
first and second bands (σ1+2) and third and fourth (σ3+4) for Al. E0gap andEgap are the direct
gap at0 and the absolute gap, respectively, both in eV.k is the wave vector of the minimum
of the conduction band in units ofπ/a, being|k| = 1 for the X point.

Basis SQ S8 σv σc E0gap Egap |k|
Si PAOv∞ 0.0078 0.1621 0.28 1.97 2.91 1.69 0.63

PAO8∞ 0.0348 0.1233 0.94 2.13 2.33 1.44 0.80
PAOv5.0 0.0136 0.1453 0.44 2.16 2.78 1.96 0.62
PAO8

5.0 0.0230 0.1170 0.91 2.47 2.50 0.95 0.83

STO1v 0.0109 0.1764 0.38 2.43 2.83 2.60 0.47
STO18 0.0207 0.1541 0.60 2.27 2.40 1.94 0.60

STO2v 0.0076 0.1562 0.34 2.34 2.66 2.09 0.53
STO28 0.0306 0.1179 0.79 1.48 2.39 0.85 0.80

STO3v 0.0074 0.1548 0.29 1.95 2.66 1.74 0.60
STO38 0.0465 0.1121 1.20 1.28 2.52 0.53 0.83

PW 2.55 0.45 0.85

Basis SQ S8 σv σc E0gap Egap |k|
C PAOv∞ 0.0027 0.0780 0.25 2.61 6.57 5.83 0.50

PAO8∞ 0.0192 0.0600 0.89 2.04 5.19 4.13 0.67
STO1v 0.0039 0.0771 0.26 3.07 5.78 5.78 0.00
STO18 0.0208 0.0592 0.94 1.95 4.67 4.34 0.42

STO2v 0.0039 0.0775 0.24 3.05 5.79 5.79 0.00
STO28 0.0293 0.0545 1.37 1.88 4.49 3.51 0.58

STO3v 0.0024 0.0790 0.17 3.36 6.32 6.18 0.42
STO38 0.0335 0.0526 1.32 1.46 4.81 3.96 0.67

PW 5.28 3.43 0.76

Basis SQ S8 σv σc E0gap Egap |k|
BN PAOv∞ 0.0022 0.0766 0.24 3.06 10.90 8.56 0.93

PAO8∞ 0.0154 0.0534 0.96 2.21 7.93 4.63 0.93
PW 8.19 3.82 0.93

Basis SQ S4 σ1+2 σ3+4

Al PAOv∞ 0.0011 0.0079 0.35 0.84
PAO4∞ 0.0036 0.0024 0.37 0.23

bands are much less well described by the minimal bases shown in the table.
The dependence in the number of bands to be optimized through the spillage is shown

in table 2 for Si, C, BN, and Al. Each kind of basis has been optimized by minimizing (i)
the charge spillage and (ii) a spillage including conduction bands (S8 for Si, C, and BN; and
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Table 3. The interaction range for minimal sp bases in Si. NS stands for the number of neighbour
shells with non-negligible interactions andr99.9% is a measure of the size of the orbitals as defined
in the text. SQ stands for the charge spillage, andS8 for the spillage considering the first 8
bands. The mean square error of the LCAO bands with respect to the PW reference bands (in
eV) is displayed for the valence bands (σv) and the first two conduction bands (σc). STO11.75

and STO11.85 are the STO1 bases for the exponentsβ = 1.75 au−1 [5] and 1.85, respectively.

Basis SQ S8 σv σc r99.9% NS

STO11.75 0.0319 0.2279 0.96 4.27 5.1 4
STO11.85 0.0514 0.2533 1.07 4.64 4.8 3

PAO∞ 0.0080 0.1596 0.30 2.15 7.9 9
PAO5.0 0.0139 0.1591 0.36 2.09 4.6 3
PAO4.0 0.0506 0.2269 1.01 3.89 3.7 2

Table 4. Single-z, double-z (2-z), and spd bases for Si and C (diamond).SQ stands for the
charge spillage, andS8 for the spillage considering the first 8 bands. The mean square error
of the LCAO bands with respect to the PW reference bands (in eV) is given for the valence
bands (σv) and the first two conduction bands (σc). The superscript v means ‘optimized for the
valence band’. The STO 2-z bases are after [21].

Basis SQ S8(4) σv σc

Si STO3v sp 0.0074 0.1548 0.29 1.95
STO 2-z 0.0099 0.0735 0.36 1.50
STO3v spd 0.0009 0.0101 0.09 0.23

PAO5.0 sp 0.0139 0.1591 0.36 2.09
PAO5.0 2-z 0.0085 0.0827 0.36 1.50
PAO5.0 spd 0.0042 0.0132 0.15 0.38

C STO3v sp 0.0024 0.0790 0.17 3.36
STO 2-z 0.0032 0.0059 0.36 0.40

PAO4.0 sp 0.0041 0.0672 0.23 2.22
PAO4.0 2-z 0.0018 0.0165 0.28 1.37

S4 for Al). It can be seen how an improvement inS8(4) is accomplished when optimizing
the basis for it—but the price being paid in the worsening ofSQ. In addition to theS-
and σ -values, the band-gap region description is evaluated by showing the values of the
0 direct and indirect gaps, and the position of the minimum of the conduction band. An
important and systematic improvement is observed in these quantities when the optimization
is extended to unoccupied states. The information displayed offers the necessary information
for the evaluation of the trade-off in the quality of the different spectral regions for the choice
of a basis for a particular application. Figure 7 shows the band structure of Si obtained with
a minimal sp STO3 basis optimized consideringS8. Notice the nice agreement in the band-
gap region, showing a very realistic indirect gap, quite rare for a minimal basis (compare
with the typical cases shown in figures 8(a) and 8(d)). The LCAO bands have been shifted
by 1.04 eV, which means an important deviation in total energies, if computed. Another
price to pay is the very-long-range interactions due to the unusual extension acquired by
the orbitals in the optimization.

Trying to improve the performance, other, more complicated, kinds of basis have also
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Figure 4. (a) Charge spillage for silicon with a PAOrc sp and spd basis versusrc; (b) charge
spillage versus the shell of neighbours with non-zero overlaps for the spd basis; and (c) as (b),
but for the sp basis.

Figure 5. (a) Spillage for the occupied and first eight bands for diamond with a PAOrc sp basis
versusrc; (b) charge spillage versus the shell of neighbours with a non-zero-overlaps basis; and
(c) the same, but for the spillage of the first eight bands.

been tried, the results not being shown in the tables. Pseudo-STO (see section 4) provide
good bases, but the improvements on the others (STO and PAO) have not been substantial
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Figure 6. As figure 4, but for aluminium.

Figure 7. Gap optimization with a minimal basis. The silicon band structure calculated with
a STO3 sp basis optimized to reproduce the occupied eigenstates and the first four conduction
bands. The PW band structure is shown with dots. The STO3 bands have been shifted by 1.04
eV to make the tops of the two valence bands coincide.

enough for seriously considering them as alternative candidates. They have been optimized
by varying the STO parameters outside of the core region (as for STO3) plus the extra degree
of freedom given by the core radius. For Si a minimum inSQ is obtained for a core radius
of 1 au, but the spillage is only 4% lower than the spillage of the STO3 case. This fact
indicates that the projection is not so sensitive to the core regions as to worsen the overall
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Figure 8. The band structure of Si for minimal, double-z, and spd bases. In (a), (b) and (c)
the Hamiltonian is projected onto a STO3 sp, STO double-z, and STO3 spd basis, respectively.
The STO3 bases are optimized for the valence band. (d), (e) and (f) correspond to PAO5.0 sp,
double-z, and spd bases. The PW reference band structure is shown with dots.

projection if the core region in the basis orbitals is not adapted to the pseudopotential.
Another kind of basis has been constructed based on PAOrc . More degrees of freedom

are given to the spillage minimization by linearly combining excited states of the atomic
problem with the ground state. For each symmetry (s, px, py, pz, . . .) the atomic orbital is
constructed with a linear combination of the ground and excited states of the corresponding
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pseudopotential. This procedure considerably reduces the spillage without increasing the
size of the basis. However, the band-structure features are not accordingly improved. This
fact leads to the conclusion that, for the spillage–energy correlation to be satisfactory in the
solid, the energetics in the basis itself (in the atomic problem) has to be considered.

6.2. The range of interactions

An important aspect defining the applicability of LCAO bases is their range of interactions,
i.e., the scope of neighbour shells that have to be included in the LCAO Hamiltonian and
overlap matrices. The basis sets giving comparable results in the previously shown quantities
perform quite differently in this respect. This is shown in table 3. This information is
obtained by computing the atomic matrix elements of the Hamiltonian and overlap matrices
as described in section 2. Due to the different analytical expressions for the orbitals, to
measure the interaction range we adopt an ‘empirical criterion’, namely, the radiusr99.9%

for which 99.9% of the norm of the orbital is within the sphere with that radius. We have
found that this criterion is meaningful in the sense that neglecting interactions beyond that
radius does not appreciably alter the energy bands corresponding to the valence and some
conduction bands (average error lower than 0.05 eV). Neglecting interactions within this
radius produces appreciable deviations in the bands. For PAOrc the interacting scope is
clearly defined byrc (which includes 100% if the norm is within), but for shortrc they are
very similar tor99.9%, and for largerrc then r99.9% becomes more meaningful. Therefore,
we also characterize the PAOrc with r99.9%. Besides this quantity, table 3 also shows the
scope of non-negligible neighbouring shells for each case.

PAO∞ represents the best basis as far as spillage and band quality are concerned, and
also for population purposes [9] (see the next section), but its range of interactions is
very large. This fact was already pointed out by Jansen and Sankey [14] in their work
on self-consistent calculations using this basis. The results of our calculations show that
interactions up to at least five (ten) shells of neighbours have to be retained for Si (C) to
obtain a reasonable band structure with the correct semiconducting behaviour. The best
basis suited for a shorter range of interactions, together with keeping good standards in
spillage and band structure, is the PAOrc , as can be seen in table 3 and figure 4 for Si, in
figure 5 for C, and in figure 6 for Al. Note that, in spite of C needing a smallerrc than Si
to attain small spillages, the range of neighbours is larger for C due to the much smaller
lattice parameter.

6.3. Polarized and double-z basis sets

The clearest way of improving the quality of a basis is increasing its size. In LCAO there are
two usual ways of doing this: (i) increasing the number of orbitals within the same atomic
symmetries as found in the minimal basis; and (ii) polarizing the basis. Within the first, the
double-z case is the most usual one, i.e., doubling the basis, which in the cases of this paper
means a basis of two s, two px , two py and two pz orbitals. A polarization of the basis is
accomplished when a shell of different atomic symmetry is added to the minimal basis. In
our cases this means the addition of the d shell to the minimal sp basis. Combination of these
two procedures is also customary for further improvement. A rule of thumb in quantum
chemistry says that a basis should always be doubled before being polarized [5]. This is
not the usual practice within the LCAO calculations in the solid-state-physics community,
where double-z bases are hardly to be found.

Expanded STO bases can be found in the literature [5]. This is not the case for PAO.
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In this paper we propose to use the excited states of the atomic calculations leading to the
PAOrc , under the same boundary conditions, to obtain the orbitals required to expand the
basis, i.e., excited s and p orbitals for double-z bases and d orbitals for polarization. The
advantages of this scheme are its simplicity and the controlled range of interactions for the
added orbitals also, which is usually lost in the traditional scheme.

Again, we study here the quality of expanded LCAO bases by means of their spillage
and their band structure as obtained from the projection. The results of our analysis are
shown in table 4, where minimal (single-z), double-z, and polarized single-z bases are
compared for silicon and diamond. See also table 1 for aluminium. The sp and spd bases
are optimized as above using STO3 for the Slater orbitals, and using the correspondingrc
for the PAO, as shown in figures 4–6. The double-z basis for STO has been taken from the
literature [5, 21]. Note that, with the double-z basis, Si does not reach equivalent quality
to C, and that, for that purpose, the polarization of the basis is quite enough.

Table 5. The band gap in Si and C (diamond) for single-z and double-z (2-z) bases.E0gap and
Egap stand for the direct-gap energy at0 and for the absolute gap energy, respectively, both in
eV. k is the wave vector of the minimum of the conduction band in units ofπ/a, being|k| = 1
for the X point.

Basis E0gap Egap |k|
Si STO3v sp 2.65 1.74 0.60

STO 2-z 2.40 0.88 0.73
STO3v spd 2.58 0.76 0.85

PAO5.0 sp 2.47 2.18 0.47
PAO5.0 2-z 2.49 1.03 0.70
PAO5.0 spd 2.65 0.91 0.85

PW 2.55 0.45 0.85

C STO3v sp 6.32 6.18 0.41
STO 2-z 5.46 4.30 0.73

PAO4.0 sp 5.98 5.89 0.34
PAO4.0 2-z 6.00 5.28 0.53

PW 5.28 3.43 0.76

The band structures corresponding to the data of table 4 are shown in figure 8 for Si,
figure 9 for C, and figure 10 for Al (table 1), in each case comparing the LCAO bands
obtained from the projection with the reference PW bands. The information given in the
table is ratified, and observed in more detail. Note that the substantial improvement in the
Si case occurs when including the d orbitals, but not when doubling the minimal basis. For
diamond, however, such qualitative improvement is given by the double-z basis. The figures
for the gap in the Si and C cases are shown in table 5. In the Al case, the polarization is
needed from the start, the sp projection giving defective band structures in the neighbourhood
of the Fermi level around the W point. The spd band structure is shown in figure 10 for
PAOrc for different rc. The performance of the double and polarized STO bases in the first
conduction bands is better than that of the corresponding PAOrc bases. This is due to the
larger extension of the extra orbitals in the STO bases, which is not allowed in the PAOrc .
The latter, however, also represent a considerable improvement over the minimal bases,
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Figure 9. The band structure of diamond for single-z and double-z bases. (a) and (b) correspond
to the projection onto a STO3 sp and STO double-z basis set, respectively. The STO3 basis is
optimized for the valence band. (c) and (d) correspond to PAO4.0 sp and double-z bases. The
PW reference band structure is shown with dots.

while keeping the interaction range. This virtue makes them very appealing for accurate
LCAO calculations.

The error in the band structures could be noticeably reduced with a rigid shift of the
bands, which is clear in view of the figures. This has not been allowed, in order to keep
the band-structure error as representative of the behaviour to be expected of total energies.

6.4. Geometry and environment dependence

The projection procedure proposed in this paper is based on PW calculations of actual
materials. As compared to basis optimization in atoms, this allows equating the basis to
particular environments or geometries. As a first example we show the change in the
minimal sp PAOrc basis for C depending on the solid being diamond or graphite. Figure 11
shows the charge spillage as a function ofrc and of the range of interacting neighbouring
shells. Graphite is less well represented by the same kind of basis. In addition, graphite
requires a largerrc to approach minimum spillage. This latter fact is due to the comparatively
large interplanar distances in the graphite structure.

Another example of geometry dependence of the basis quality is given in figure 12,
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Figure 10. The aluminium band structure: (a) calculated with the PAO5.3 spd basis; and (b)
calculated using the PAO6.1 basis. Dotted lines show the PW band structure (the Fermi energy
is 8.2 eV).

Figure 11. (a) Charge spillage for diamond (D) and graphite (G) as a function ofrc for a PAOrc
sp basis. (b) Charge spillage for diamond as a function of the shell of neighbours with non-zero
overlap, and (c) the same for graphite.

where the charge spillage of a minimal PAOrc for Si is plotted versus the lattice constant
for different values ofrc. From the figure it is clear that (i) for spillage purposes and,
therefore, for the total energy, the basis is better the largerrc, (ii) the slope inSQ versus
lattice constant will translate to a corresponding slope of the total energy, which gives rise
to a fictitious pressure on the system, (iii) this pressure differs according to the value ofrc,
and the optimumrc for this purpose (the one giving zero pressure, withrc between 5 and
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Figure 12. (a) SQ versus the lattice constant of silicon
for PAOrc bases, (b)δSQ = SQ − SeqQ where theSeqQ
is taken at the equilibrium value of the lattice constant
a0 = 10.2 au. ♦ stands forrc = 4 au,+ for rc = 5 au,
� for rc = 6 au, and× for rc = ∞.

Figure 13. The charge transfer in SiC as a function
of the charge spillage of the sp basis used to project
the density. � stands for PAO∞ optimized for the
heteropolar system and independently for Si and C in
a zinc-blende structure;♦ stands for the STO3 basis in
the same conditions; and+ stands for a STO2 basis.

6 au) is different from the optimum for energy considerations (rc = ∞), and (iv) there are
no appreciable curvatures, from which it can be inferred that no substantial deviations are
to be expected in the elastic and force constants (vibrations) due to the basis.

7. Population analysis

One of the uses of the projection into a LCAO is the possibility of performing population
analysis of the PW results, which is otherwise inaccessible. It is well known that any
population analysis has an inherent arbitrariness associated with the fact that the relevant
quantities in the analysis do not correspond to observables, but rather to convenient ways
of dissecting the total charge of the system. Furthermore, small variations in the basis can
produce quite different population results, particularly for charge transfers. In spite of this,
much of the chemical description of condensed systems is performed in the language given
by such population analyses. We, therefore, consider it worthwhile to explore this problem
with the spillage.

Due to the above-mentioned arbitrariness, the correlation of charge transfers and charge
spillage is expected to be poor. This is clear when the basis is made uncompensated—
like, for instance, when introducing d orbitals for silicon in SiC. This greatly improves the
description of the eigenfunctions and reduces the spillage, but as the basis is uncompensated,
some features (the structure of the bond) are described by the much more complete basis of
one of the atoms, so more electronic charge is assigned to the atom with the more complete



Analysis of atomic orbital basis sets 3879

basis, leading to an unphysical charge transfer. A compensated basis is therefore important
for the populations to be meaningful. A measure of this compensation can be obtained if the
spillage is calculated independently for structurally similar solids containing the individual
atoms separately. The spillages for silicon and diamond separately, using the same kind of
basis for the two, indicate a slight lack of compensation favouring diamond, which, in this
case, indicates that the charge transfer might be slightly overestimated. In addition to that,
the optimization of the basis is important for obtaining reliable values of charge transfers.
This is seen in figure 13, where the charge transfer in SiC is shown to correlate with the
spillage. A ‘converged’ charge transfer is not guaranteed, but, provided that the basis is
compensated, a small spillage indicates a meaningful charge transfer.

Table 6. Calculated excess charge, in units ofe, for the upper and lower Si atoms in the dimer
of a Si(100)–2× 1 surface. A minimal sp basis has been used in all cases.SQ stands for the
charge spillage. PAOopt∞ and STO1 have been optimized for bulk silicon. STO11.75 is a STO1
basis withβ = 1.75 au−1 [5].

Basis SQ δQup δQdown

PAO∞ 0.0080 −0.10 + 0.12
PAOopt∞ 0.0078 −0.10 + 0.13
PAO5.0 0.0139 −0.13 + 0.10

STO11.75 0.0318 −0.15 + 0.10
STO1 0.0076 −0.13 + 0.12

The charge transfers for some zinc-blende semiconductors (BN, BP, AlP, SiC, and
GaAs) obtained with the projection procedure using optimized PAO∞ basis sets are shown
in table 1 of [9]. The numbers compare well with equivalent results obtained from direct
LCAO self-consistent calculations [22, 23]. Systems with only one species do not present
these difficulties for the charges since the basis can be trivially compensated. Table 6
shows the excess of charge (with respect to the neutral atom) assigned to the upper and
lower atoms of a dimer in the Si(100)–2× 1 surface [24]. A minimal basis has been used.
The populations are quite stable and independent of the basis used.

8. Conclusions

We have presented a projection method which provides a tool for characterizing and
optimizing atomic orbital basis sets for a given system. Independently of how many
bases are evaluated for that particular system, onlyonereference self-consistent plane-wave
calculation is required. The method also provides LCAO band structures, Hamiltonian
matrix elements (non-fitted tight-binding parameters), and population analysis.

Based on that tool and on its characteristic parameter, the spillage, an exhaustive analysis
of two kinds of LCAO basis set, namely, Slater-type (STO) and pseudo-atomic (PAO)
orbitals, has been presented for several solids, arriving at the following conclusions.

(i) The spillage provides a very convenient tool for studying and variationally optimizing
basis sets, that closely correlates with energy optimizations.

(ii) The LCAO band structures obtained from the projection allow one to characterize
separately the errors due to the incompleteness of the basis and to considering a limited
range of interactions. This is due to the fact that the bands are obtained directly in Bloch
space, with interactions to infinite neighbours.
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(iii) Both STO and PAO optimized with spillage minimization give quite good basis
sets, of comparable quality.

(iv) If a controlled range of neighbour interactions is desired, the best-performing basis
sets are provided by the PAOrc introduced by Sankey and Niklewski [13].

(v) A simple and interaction-range-controlled scheme for extending PAO basis sets to
double-z and/or polarized bases is proposed, and shown to give good basis sets.

(vi) Double-z bases substantially improve the performance for diamond, whereas d
polarization is required for similar results for Si and Al.

(vii) The spillage minimization allows optimization tailored for particular uses, e.g. the
description of excitations or band gaps, and environmental dependence of the basis.

(viii) Population analysis can be performed, and its intrinsic arbitrariness can be partially
controlled by means of the spillage.
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(DGICYT) under grant PB92-0169.

References

[1] Eschrig H 1987Optimized LCAO Methods(Berlin: Springer) and references therein
[2] See, for instance,

Ihm J, Zunger A and Cohen M L 1979 J. Phys. C: Solid State Phys.12 4409
[3] Hamann D R, Schl̈uter M and Chiang C 1979Phys. Rev. Lett.43 1494
[4] Ordejón P, Drabold D A, Martin R M and Grumbach M P 1995Phys. Rev.B 51 1456 and references therein
[5] Poirier R, Kari R and Csizmadia I G 1985Handbook of Gaussian Basis Sets(Amsterdam: Elsevier Science)

and references therein
[6] Chadi D J 1977Phys. Rev.B 16 3572
[7] Francisco E, Seijo L and Pueyo L 1986J. Solid State Chem.63 391 and references therein
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